• Zur Hauptnavigation springen
  • Zum Inhalt springen
  • Zur Seitenspalte springen
  • Zur Fußzeile springen

Österreichische Kunststoffzeitschrift

Ihr Fachmagazin für Industrie und Forschung

  • Zeitschrift
    • Mediadaten
    • Themen 2025
    • Abonnement
    • Archiv
  • Kunststoff.direct
  • Messekalender
  • Stellenmarkt
    • Stellenangebote
    • Stellengesuche
  • Impressum
  • News-Archiv
    • 2017
    • 2018
    • 2019
    • 2020
    • 2021
    • 2022
    • 2023
    • 2024

Intelligenter Kunststoff für gefühlvolle Roboterarme

22. Juni 2021 von Birgit Fischer

Chirurgische Instrumente, die sich wie feine Oktopus-Arme in alle Richtungen schlängeln oder große, kraftvolle, aber leichte Roboter-Tentakel, die gefahrlos mit Menschen Hand in Hand arbeiten oder ihnen unter die Arme greifen: Mit starken Muskeln und sensiblen Nerven aus intelligentem Kunststoff entsteht eine neue Generation von Roboterarmen. Das Team um die Experten für smarte Materialsysteme Professor Stefan Seelecke und Juniorprofessor Gianluca Rizzello schafft hierfür an der Universität des Saarlandes die Grundlagen.

Als wäre der Roboterkollege aus Fleisch und Blut arbeiten in der Fabrik der Zukunft Mensch und Maschine Seite an Seite – einträchtig, im Team und spontan: Das ist die Vision der Arbeitswelt von morgen. Zwar haben „Cobots“, die kollaborativen Roboter, schon begonnen, die Industriehallen zu erobern. Aber noch ist es nicht so weit her mit dem Hand in Hand-Teamwork. Es gibt eine Schwachstelle: die körperliche Nähe des Menschen, der keinem festen Programm, sondern plötzlicher, mitunter unlogischer Eingebung folgt oder schlicht abgelenkt ist. Nicht ohne Grund stecken Roboterarme in Fertigungsstraßen oft in Käfigen. Wer hier reinläuft, für den wird es gefährlich. Die schweren Metallmaschinen sind kraftvoll, geschickt und flink, sie schweißen, montieren, lackieren, stapeln und hieven. Aber – programmiert ist programmiert – sie folgen strikt ihrem Bewegungsablauf. Und ist ein Mensch im Weg – dann ist er im Weg.

Neue, smarte Art von Roboterarmen

An einer neuen, smarten Art von Roboterarmen arbeitet das Team um Professor Stefan Seelecke und Juniorprofessor Gianluca Rizzello an der Universität des Saarlandes und am Saarbrücker Zentrum für Mechatronik und Automatisierungstechnik (Zema). „Unsere Technologie der intelligenten Polymersysteme ermöglicht neuartige, weiche Roboterwerkzeuge, die leichter, wendiger und flexibler sind als die heutigen starren technischen Bauteile“, erklärt Stefan Seelecke. Ein ungeplanter Schubs eines solchen Roboterarms der Zukunft ist dann eher wie der eines menschlichen Kollegen.

Der Stoff aus dem diese neuen, weichen Roboterarme gebaut sind, heißt „dielektrisches Elastomer“, eine Unterart der Polymere. Aus diesem Verbundwerkstoff erschaffen die Saarbrücker Forscherinnen und Forscher künstliche Muskeln und Nerven. Die besonderen Eigenschaften des Werkstoffs machen es möglich, nach dem Vorbild der Natur zu arbeiten: Elastomere lassen sich stauchen und nehmen ihre ursprüngliche Form wieder ein, strecken sich also wieder.

Juniorprofessor Gianluca Rizzello mit "dielektrischen Elastomeren". Aus diesem Verbundwerkstoff erschaffen die Saarbrücker Forscherinnen und Forscher künstliche Muskeln und Nerven von flexiblen Roboterarmen | Foto: Oliver Dietze
Juniorprofessor Gianluca Rizzello mit „dielektrischen Elastomeren“. Aus diesem Verbundwerkstoff erschaffen die Saarbrücker Forscherinnen und Forscher künstliche Muskeln und Nerven von flexiblen Roboterarmen | Foto: Oliver Dietze

„Wir bedrucken das Elastomer beidseitig mit Elektroden. Legen wir eine elektrische Spannung an, ziehen sich die Elektroden an und stauchen das Elastomer, das dabei gleichzeitig seine Fläche ausdehnt“, erklärt der Juniorprofessor für Adaptive polymerbasierte Systeme, Dr. Gianluca Rizzello. Der gebürtige Italiener arbeitet seit 2016 mit Seelecke in dessen Team. Das Elastomer kann sich also zusammenziehen und strecken wie ein Muskel. „Diese Eigenschaft nutzen wir als Aktor, also als Antrieb“, erklärt Rizzello. Indem sie das elektrische Feld ändern, lassen die Ingenieure das Elastomer hochfrequent vibrieren, stufenlos kraftvolle Hub-Bewegungen vollführen oder auch in jeder gewünschten Stellung verharren.

Aus vielen dieser kleinen Muskeln setzen die Forscher nun flexible Roboterarme zusammen. In einem Roboter-Tentakel aneinandergereiht, bewirkt ihr Zusammenspiel, dass dieser sich wie der Fangarm eines Kraken in alle Richtungen biegen und schlängeln kann: Anders als bei den schweren und starren Robotergelenken heute üblicher Roboter, die wie beim Menschen Bewegungen nur in bestimmte Richtung zulassen, sind der Freiheit dieses Tentakels keine Grenzen gesetzt. Für ihre Arbeit am Prototyp dieser Elastomer-Muskel-Tentakel, hat Gianluca Rizzello zusammen mit seinem Doktoranden Johannes Prechtl jüngst den Best Paper Award auf der RoboSoft2021-Konferenz erhalten – eine von vielen Auszeichnungen der Arbeitsgruppe um Stefan Seelecke. Ein Tentakel-Prototyp soll in etwa einem Jahr vorliegen.

Bewegungsabläufe präzise modellieren und programmieren

Gianluca Rizzello ist Spezialist, wenn es darum geht, dem Kunststoff Intelligenz einzuhauchen. Er gibt dem Roboter-Gehirn, also der Steuerungseinheit, den nötigen Input, damit sie den Arm intelligent bewegen kann – ein überaus anspruchsvolles Unterfangen. „Diese Systeme sind komplexer als die heutiger Roboterarme. Polymerbasierte Komponenten mit künstlicher Intelligenz zu steuern, ist weit schwieriger als bei herkömmlichen mechatronischen Systemen“, erklärt Rizzello. Die Elastomer-Muskeln fungieren dabei zugleich als Nerven des Systems: Sie haben selbst Sensor-Eigenschaften. Daher kommt dieser Roboterarm ohne weitere Sensorik aus. „Jede Verformung des Elastomers, jede Änderung seiner Geometrie, bewirkt eine Änderung der elektrischen Kapazität und lässt sich präzisen Messwerten zuordnen. Messen wir die elektrische Kapazität, wissen wir, wie das Elastomer gerade verformt ist und können hieraus sensorische Daten ablesen“, erläutert der Ingenieur.

Mit diesen Werten lassen sich die Bewegungsabläufe präzise modellieren und programmieren: Hierfür intelligente Algorithmen zu entwickeln, um den neuartigen Roboter-Tentakeln ihr gewünschtes Verhalten anzutrainieren, steht im Mittelpunkt von Gianluca Rizzellos Forschung. „Wir arbeiten daran zu verstehen, welche physikalischen Eigenschaften dem Verhalten der Polymere zugrunde liegen. Je mehr wir darüber wissen, umso passgenauere Algorithmen können wir zu ihrer Steuerung entwerfen“, sagt der Juniorprofessor.

Die Technologie wird skalierbar sein: Sie kann in feinen Tentakeln etwa für medizinische Instrumente zum Einsatz kommen, aber auch bei großen Industrierobotern. Anders als die heutigen Roboterarme, die schon mit ihrem beachtlichen Gewicht gegen die Schwerkraft ankämpfen müssen, werden diese Roboterarme leicht sein.

Professor Stefan Seelecke, Lehrstuhl für intelligente Materialsysteme der Universität des Saarlandes | Foto: Oliver Dietze

Sie kommen ohne Motoren, Hydraulik oder Druckluft aus und funktionieren nur mit elektrischem Strom. Die Bauform der Elastomer-Muskeln kann dem jeweiligen Bedarf angepasst werden. Auch brauchen sie nur wenig Energie. Je nach Kapazität sind dies nur Ströme im Mikroampere-Bereich. Das macht diese Robotertechnologie, für die wir derzeit die Grundlagen erforschen, energieeffizient und kostengünstig.

Professor Stefan Seelecke, Lehrstuhl für intelligente Materialsysteme der Universität des Saarlandes

Kategorie: Forschung, News Stichworte: Automatisierung, Elastomer, Polymer, Roboter

Weitere Nachrichten

Werner & Mertz und PreZero kooperieren für die Kreislaufwirtschaft

Am 5. Juni, zum „Tag der Kreislaufwirtschaft“ des BDE, fiel der Startschuss für eine neue Kooperation zwischen Werner & Mertz und PreZero. Ziel der Zusammenarbeit ist es, die Kreislaufwirtschaft … [Weiterlesen...] ÜberWerner & Mertz und PreZero kooperieren für die Kreislaufwirtschaft

Dünnschichtsensoren optimieren Echtzeitkontrolle im Spritzguss

Für die ressourcenschonende und wirtschaftliche Herstellung von Kunststoffbauteilen sind automatisierte Prozesse unverzichtbar. Das Fraunhofer-Institut für Schicht- und Oberflächentechnik IST stellt … [Weiterlesen...] ÜberDünnschichtsensoren optimieren Echtzeitkontrolle im Spritzguss

Leichtbau-Innovation von ENGEL auf der EUROBIKE 2025

Mit dem Fokus auf Leichtbau präsentiert sich ENGEL erstmals auf der EUROBIKE, die vom 25. bis 29. Juni 2025 in Frankfurt stattfindet. In einer vollständig integrierten Produktionszelle zeigt das … [Weiterlesen...] ÜberLeichtbau-Innovation von ENGEL auf der EUROBIKE 2025

Konstantin Klein: Monomaterial ist heute technisch etabliert

Im Interview mit dem VDMA im Rahmen der „way2K“-Reihe gibt Konstantin Klein von der Hosokawa Alpine AG einen tiefen Einblick in die Entwicklungsschritte und die gegenwärtige Leistungsfähigkeit von … [Weiterlesen...] ÜberKonstantin Klein: Monomaterial ist heute technisch etabliert

Seitenspalte

Suche

Messekalender

Sep. 3
3. September - 4. September

PHA World Congress 2025

Sep. 17
Ganztägig

Kunststoffenbeurs 2025

Sep. 17
17. September - 18. September

MAT-DAYS 2025

Sep. 22
22. September - 24. September

Renewable Materials Conference 2025

Okt. 8
8. Oktober - 15. Oktober

K Messe 2025

Kalender anzeigen

Newsletter

  • Newsletter Anmeldung
  • Newsletter-Archiv

Die aktuelle Ausgabe

NEUERSCHEINUNG

Welkin Media News

Aktuelle Nachrichten aus unseren anderen Online-Portalen Österreichische Chemie Zeitschrift und Lebensmittel-&Biotechnologie

  • BASF kauft DOMO-Anteil an Alsachimie
    am 16. Juni 2025 von Birgit Fischer (Die Chemie Zeitschrift Österreichs)

    BASF übernimmt den 49-prozentigen DOMO-Anteil an Alsachimie und stärkt ihre Position bei Polyamid-Vorprodukten. Mit der vollständigen Kontrolle über den Standort Chalampé will BASF die Versorgung mit Polyamid-Vorprodukten absichern und die […]

  • AIT Poster Award 2025 prämiert zukunftsweisende Technologien
    am 16. Juni 2025 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Der AIT Poster Award 2025 würdigt Forschungsprojekte mit wirtschaftlichem Potenzial. Der erste Platz ging an eine neue Technologie zur Iridiumreduktion in PEM-Elektrolyseuren. Weitere Beiträge adressierten Quantenkommunikation und […]

  • IC-Substrat-Zentrum für Mikroelektronik in Leoben eröffnet
    am 13. Juni 2025 von Birgit Fischer (Die Chemie Zeitschrift Österreichs)

    AT&S hat am 3. 06. 2025 in Leoben das erste europäische Kompetenzzentrum für F&E sowie Produktion von IC-Substraten in Betrieb genommen. In dem hochmodernen Gebäudekomplex „Hinterberg 3“ arbeiten bereits 420 neue Fachkräfte auf einer […]

  • CO2-Elektrolyse unter Hochdruck
    am 12. Juni 2025 von Birgit Fischer (Die Chemie Zeitschrift Österreichs)

    Forschende entwickeln Zero Gap Reaktor der CO2 Elektrolyse bei Differenzdruck bis 40 bar ermöglicht und industrielle Integration erlaubt. Diese Innovation eröffnet neue Möglichkeiten für eine direkte Kopplung der CO2-Elektrolyse an bestehende […]

  • Elektrischer Tunnelofen spart bis zu 40 % Energie
    am 12. Juni 2025 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Der GEA Tunnelofen E-Bake G2 spart 40 % Energie durch Mikrokonvektion und flexible Module für präzises elektrisches Backen. Er ist auf die Produktion von Hartkeksen, Weichkeksen und Crackern ausgelegt und bietet eine verbesserte Luftströmung […]

  • Labortechnik & Analytik auf der LAB-SUPPLY Innsbruck
    am 11. Juni 2025 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Die LAB-SUPPLY Innsbruck am 25. Juni 2025 bietet Fachvorträge, Innovationen und direkte Kontakte für Expert*innen aus Forschung, Industrie und Gesundheitswesen. Labortechnik zum Anfassen – kompakt an einem Tag im Congress Innsbruck. Eintritt […]

  • RAG Austria wird Partner im Wasserstofftechnik-Studium
    am 11. Juni 2025 von Birgit Fischer (Die Chemie Zeitschrift Österreichs)

    Das duale Bachelorstudium Wasserstofftechnik an der FH Technikum Wien gewinnt mit der RAG Austria AG einen weiteren starken Unternehmenspartner. Die Kooperation erweitert das bestehende Netzwerk aus namhaften Industrieunternehmen und stärkt die […]

  • Mobiles Biomasse-Kraftwerk wandelt Altstoffe in Energie um
    am 10. Juni 2025 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Corbofix präsentiert ein patentiertes Biomasse-Kleinkraftwerk, das regional anfallende biogene Abfälle in Energie, Strom und Wärme umwandelt. Die kompakte Anlage ist mobil einsetzbar und eignet sich sowohl für kleinere Gemeinden und KMUs als […]

  • Pilotanlage für SOEC-Stacks eröffnet
    am 10. Juni 2025 von Birgit Fischer (Die Chemie Zeitschrift Österreichs)

    Die Hochtemperatur-Elektrolyse ermöglicht eine besonders effiziente Herstellung von grünem Wasserstoff für industrielle Anwendungen. Der Beitrag Pilotanlage für SOEC-Stacks eröffnet erschien zuerst auf Die Chemie Zeitschrift Österreichs.

  • Falling Walls Lab Vienna 2025
    am 6. Juni 2025 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Das Falling Walls Lab Vienna 2025 bringt einen international renommierten Pitch-Wettbewerb nach Österreich. Junge Talente aus Forschung, Hochschule und innovativen Unternehmensbereichen erhalten die Möglichkeit, ihre zukunftsweisenden Ideen zu […]

Footer

Zeitschrift

  • Impressum
  • Datenschutz
  • Wer.Was.Wo

WelkinMedia Fachverlag

  • Österreichische Chemie Zeitschrift
  • Lebensmittel-&Biotechnologie
  • labor.at
  • WelkinMedia

Copyright © 2025 · WelkinMedia Fachverlag